What's After the Real Time Web?

In typical Web-industry style we’re all focused minutely on the leading trend-of-the-year, the real-time Web. But in this obsession we have become a bit myopic. The real-time Web, or what some of us call “The Stream,” is not an end in itself, it’s a means to an end. So what will it enable, where is it headed, and what’s it going to look like when we look back at this trend in 10 or 20 years?

In the next 10 years, The Stream is going to go through two big phases, focused on two problems, as it evolves:

  1. Web Attention Deficit Disorder. The first problem with the real-time Web that is becoming increasingly evident is that it has a bad case of ADD. There is so much information streaming in from so many places at once that it’s simply impossible to focus on anything for very long, and a lot of important things are missed in the chaos. The first generation of tools for the Stream are going to need to address this problem.
  2. Web Intention Deficit Disorder. The second problem with the real-time Web will emerge after we have made some real headway in solving Web attention deficit disorder. This second problem is about how to get large numbers of people to focus their intention not just their attention. It’s not just difficult to get people to notice something, it’s even more difficult to get them to do something. Attending to something is simply noticing it. Intending to do something is actually taking action, expending some energy or effort to do something. Intending is a lot more expensive, cognitively speaking, than merely attending. The power of collective intention is literally what changes the world, but we don’t have the tools to direct it yet.

The Stream is not the only big trend taking place right now. In fact, it’s just a strand that is being braided together with several other trends, as part of a larger pattern. Here are some of the other strands I’m tracking:

  • Messaging. The real-time Web aka The Stream is really about messaging in essence. It’s a subset of the global trend towards building a better messaging layer for the Web. Multiple forms of messaging are emerging, from the publish-and-subscribe nature of Twitter and RSS, to things like Google Wave, Pubsubhubub, and broadcast style messaging or multicasting via screencast, conferencing and media streaming and events in virtual worlds. The effect of these tools is that the speed and interactivity of the Web are increasing — the Web is getting faster. Information spreads more virally, more rapidly — in other words, “memes” (which we can think of as collective thoughts) are getting more sophisticated and gaining more mobility.
  • Semantics. The Web becomes more like a database. The resolution of search, ad targeting, and publishing increases. In other words, it’s a higher-resolution Web. Search will be able to target not just keywords but specific meaning. For example, you will be able to search precisely for products or content that meet certain constraints. Multiple approaches from natural language search to the metadata of the Semantic Web will contribute to increased semantic understanding and representation of the Web.
  • Attenuation. As information moves faster, and our networks get broader, information overload gets worse in multiple dimensions. This creates a need for tools to help people filter the firehose. Filtering in its essence is a process of attenuation — a way to focus attention more efficiently on signal versus noise. Broadly speaking there are many forms of filtering from automated filtering, to social filtering, to personalization, but they all come down to helping someone focus their finite attention more efficiently on the things they care about most.
  • The WebOS.  As cloud computing resources, mashups, open linked data, and open API’s proliferate, a new level of aggregator is emerging. These aggregators may focus on one of these areas or may cut across them. Ultimately they are the beginning of true cross-service WebOS’s. I predict this is going to be a big trend in the future — for example instead of writing Web apps directly to various data and API’s in dozens of places, just write to a single WebOS aggregator that acts as middleware between your app and all these choices. It’s much less complicated for developers. The winning WebOS is probably not going to come from Google, Microsoft or Amazon — rather it will probably come from someone neutral, with the best interests of developers as the primary goal.
  • Decentralization. As the semantics of the Web get richer, and the WebOS really emerges it will finally be possible for applications to leverage federated, Web-scale computing. This is when intelligent agents will actually emerge and be practical. By this time the Web will be far too vast and complex and rapidly changing for any centralized system to index and search it. Only massively federated swarms of intelligent agents, or extremely dynamic distributed computing tools, that can spread around the Web as they work, will be able to keep up with the Web.
  • Socialization. Our interactions and activities on the Web are increasingly socially networked, whether individual, group or involving large networks or crowds. Content is both shared and discovered socially through our circles of friends and contacts. In addition, new technologies like Google Social Search enable search results to be filtered by social distance or social relevancy. In other words, things that people you follow like get higher visibility in your search results. Socialization is a trend towards making previously non-social activities more social, and towards making already-social activities more efficient and broader. Ultimately this process leads to wider collaboration and higher levels of collective intelligence.
  • Augmentation. Increasingly we will see a trend towards augmenting things with other things. For example, augmenting a Web page or data set with links or notes from another Web page or data set. Or augmenting reality by superimposing video and data onto a live video image on a mobile phone. Or augmenting our bodies with direct connections to computers and the Web.

If these are all strands in a larger pattern, then what is the megatrend they are all contributing to? I think ultimately it’s collective intelligence — not just of humans, but also our computing systems, working in concert.

Collective Intelligence

I think that these trends are all combining, and going real-time. Effectively what we’re seeing is the evolution of a global collective mind, a theme I keep coming back to again and again. This collective mind is not just comprised of humans, but also of software and computers and information, all interlinked into one unimaginably complex system: A system that senses the universe and itself, that thinks, feels, and does things, on a planetary scale. And as humanity spreads out around the solar system and eventually the galaxy, this system will spread as well, and at times splinter and reproduce.

But that’s in the very distant future still. In the nearer term — the next 100 years or so — we’re going to go through some enormous changes. As the world becomes increasingly networked and social the way collective thinking and decision making take place is going to be radically restructured.

Social Evolution

Existing and established social, political and economic structures are going to either evolve or be overturned and replaced. Everything from the way news and entertainment are created and consumed, to how companies, cities and governments are managed will change radically. Top-down beaurocratic control systems are simply not going to be able to keep up or function effectively in this new world of distributed, omnidirectional collective intelligence.

Physical Evolution

As humanity and our Web of information and computatoins begins to function as a single organism, we will evolve literally, into a new species: Whatever is after the homo sapien. The environment we will live in will be a constantly changing sea of collective thought in which nothing and nobody will be isolated. We will be more interdependent than ever before. Interdependence leads to symbiosis, and eventually to the loss of generality and increasing specialization. As each of us is able to draw on the collective mind, the global brain, there may be less pressure on us to do things on our own that used to be solitary. What changes to our bodies, minds and organizations may result from these selective evolutionary pressures? I think we’ll see several, over multi-thousand year timescales, or perhaps faster if we start to genetically engineer ourselves:

  • Individual brains will get less good at things like memorization and recall, calculation, reasoning, and long-term planning and action.
  • Individual brains will get better at multi-tasking, information filtering, trend detection, and social communication. The parts of the nervous system involved in processing live information will increase disproportionately to other parts.
  • Our bodies may actually improve in certain areas. We will become more, not less, mobile, as computation and the Web become increasingly embedded into our surroundings, and into augmented views of our environments. This may cause our bodies to get into better health and shape since we will be less sedentary, less at our desks, less in front of TV’s. We’ll be moving around in the world, connected to everything and everyone no matter where we are. Physical strength will probably decrease overall as we will need to do less manual labor of any kind.

These are just some of the changes that are likely to occur as a result of the things we’re working on today. The Web and the emerging Real-Time Web are just a prelude of things to come.

5 thoughts on “What's After the Real Time Web?”

  1. Great thoughts on the evolution of the web — however on the physical evolution front there is the clear fallacy of assuming that species physically evolve in directions that would simply be more convenient for what they do a lot. Like, we think so much that our heads will evolve bigger than our bodies… wrong!

    Physical evolution works like this: if you aren't physically suited to the current environment you die and don't breed; if you are suited, then your genetic material carries on for the time being. If you had wings for some reason, and they got you living and breeding, then we'll see more wings.

    Note: Your kid's head will not be bigger because you think alot !

    If you want to predict natural physical evolution trends then point towards a mass breeding or a mass die-off that would impact the gene pool.

  2. Great thoughts on the evolution of the web — however on the physical evolution front there is the clear fallacy of assuming that species physically evolve in directions that would simply be more convenient for what they do a lot. Like, we think so much that our heads will evolve bigger than our bodies… wrong!

    Physical evolution works like this: if you aren't physically suited to the current environment you die and don't breed; if you are suited, then your genetic material carries on for the time being. If you had wings for some reason, and they got you living and breeding, then we'll see more wings.

    Note: Your kid's head will not be bigger because you think alot !

    If you want to predict natural physical evolution trends then point towards a mass breeding or a mass die-off that would impact the gene pool.

    1. The article talks about changes in our brain and in our body's strenght and mobility. These are changes that can be achieved in a very short time-span because the development of cognitive and physical abilities, though based on genetic predispositions, is mostly influenced by our environment.
      The grandson of a strong and pragmatic farmer can easily be an overweight computer genius.

Comments are closed.